Increased CD36 protein as a response to defective insulin signaling in macrophages.

نویسندگان

  • Chien-Ping Liang
  • Seongah Han
  • Haruka Okamoto
  • Ronald Carnemolla
  • Ira Tabas
  • Domenico Accili
  • Alan R Tall
چکیده

Accelerated atherosclerosis is a major cause of morbidity and death in insulin-resistant states such as obesity and the metabolic syndrome, but the underlying mechanisms are poorly understood. We show that macrophages from obese (ob/ob) mice have increased binding and uptake of oxidized LDL, in part due to a post-transcriptional increase in CD36 protein. Macrophages from ob/ob mice are also insulin resistant, as shown by reduced expression and signaling of insulin receptors. Three lines of evidence indicate that the increase in CD36 is caused by defective insulin signaling: (a) Treatment of wild-type macrophages with LY294002, an inhibitor of insulin signaling via PI3K, results in an increase in CD36; (b) insulin receptor knockout macrophages show a post-transcriptional increase in CD36 protein; and (c) administration of thiazolidinediones to intact ob/ob mice and ob/ob, LDL receptor-deficient mice results in a reversal of macrophage insulin receptor defects and decreases CD36 protein. The last finding contrasts with the increase in CD36 that results from treatment of macrophages with these drugs ex vivo. The results suggest that defective macrophage insulin signaling predisposes to foam cell formation and atherosclerosis in insulin-resistant states and that this is reversed in vivo by treatment with PPAR-gamma activators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma

Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...

متن کامل

Impaired MEK Signaling and SERCA Expression Promote ER Stress and Apoptosis in Insulin-Resistant Macrophages and Are Reversed by Exenatide Treatment

Accumulation of toxic lipids evokes the unfolded protein response (UPR) and apoptotic death of macrophages and vascular cells in atherosclerotic plaques. Primary macrophages from insulin-resistant ob/ob and insulin receptor (Insr)(-/-) mice display increased apoptosis in response to loading with free cholesterol or oxysterol, but underlying mechanisms have not been elucidated. We show increased...

متن کامل

Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm.

Because insulin has been shown to stimulate long-chain fatty acid (LCFA) esterification in skeletal muscle and cardiac myocytes, we investigated whether insulin increased the rate of LCFA transport by altering the expression and the subcellular distribution of the fatty acid transporters FAT/CD36 and FABPpm. In cardiac myocytes, insulin very rapidly increased the expression of FAT/CD36 protein ...

متن کامل

CD9 Tetraspanin Interacts with CD36 on the Surface of Macrophages: A Possible Regulatory Influence on Uptake of Oxidized Low Density Lipoprotein

CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot ...

متن کامل

Molecular mechanisms of atherosclerosis in metabolic syndrome: role of reduced IRS2-dependent signaling.

OBJECTIVE The mechanisms underlying accelerated atherosclerosis in metabolic syndrome (MetS) patients remain poorly defined. In the mouse, complete disruption of insulin receptor substrate-2 (Irs2) causes insulin resistance, MetS-like manifestations, and accelerates atherosclerosis. Here, we performed human, mouse, and cell culture studies to gain insight into the contribution of defective Irs2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2004